Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.100
Filtrar
1.
Sci Rep ; 14(1): 10556, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719847

RESUMO

Fertilization with nickel (Ni) can positively affect plant development due to the role of this micronutrient in nitrogen (N) metabolism, namely, through urease and NiFe-hydrogenase. Although the application of Ni is an emerging practice in modern agriculture, its effectiveness strongly depends on the chosen application method, making further research in this area essential. The individual and combined effects of different Ni application methods-seed treatment, leaf spraying and/or soil fertilization-were investigated in soybean plants under different edaphoclimatic conditions (field and greenhouse). Beneficial effects of the Soil, Soil + Leaf and Seed + Leaf treatments were observed, with gains of 7 to 20% in biological nitrogen fixation, 1.5-fold in ureides, 14% in shoot dry weight and yield increases of up to 1161 kg ha-1. All the Ni application methods resulted in a 1.1-fold increase in the SPAD index, a 1.2-fold increase in photosynthesis, a 1.4-fold increase in nitrogenase, and a 3.9-fold increase in urease activity. Edaphoclimatic conditions exerted a significant influence on the treatments. The integrated approaches, namely, leaf application in conjunction with soil or seed fertilization, were more effective for enhancing yield in soybean cultivation systems. The determination of the ideal method is crucial for ensuring optimal absorption and utilization of this micronutrient and thus a feasible and sustainable management technology. Further research is warranted to establish official guidelines for the application of Ni in agricultural practices.


Assuntos
Fertilizantes , Glycine max , Níquel , Solo , Glycine max/crescimento & desenvolvimento , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Fertilizantes/análise , Solo/química , Urease/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Fixação de Nitrogênio/efeitos dos fármacos , Nitrogênio/metabolismo , Fotossíntese/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/metabolismo , Agricultura/métodos
2.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731985

RESUMO

The effect of UV-B radiation exposure on transgenerational plasticity, the phenomenon whereby the parental environment influences both the parent's and the offspring's phenotype, is poorly understood. To investigate the impact of exposing successive generations of rice plants to UV-B radiation on seed morphology and proanthocyanidin content, the local traditional rice variety 'Baijiaolaojing' was planted on terraces in Yuanyang county and subjected to enhanced UV-B radiation treatments. The radiation intensity that caused the maximum phenotypic plasticity (7.5 kJ·m-2) was selected for further study, and the rice crops were cultivated for four successive generations. The results show that in the same generation, enhanced UV-B radiation resulted in significant decreases in grain length, grain width, spike weight, and thousand-grain weight, as well as significant increases in empty grain percentage and proanthocyanidin content, compared with crops grown under natural light conditions. Proanthocyanidin content increased as the number of generations of rice exposed to radiation increased, but in generation G3, it decreased, along with the empty grain ratio. At the same time, biomass, tiller number, and thousand-grain weight increased, and rice growth returned to control levels. When the offspring's radiation memory and growth environment did not match, rice growth was negatively affected, and seed proanthocyanidin content was increased to maintain seed activity. The correlation analysis results show that phenylalanine ammonialyase (PAL), cinnamate-4-hydroxylase (C4H), dihydroflavonol 4-reductase (DFR), and 4-coumarate:CoA ligase (4CL) enzyme activity positively influenced proanthocyanidin content. Overall, UV-B radiation affected transgenerational plasticity in seed morphology and proanthocyanidin content, showing that rice was able to adapt to this stressor if previous generations had been continuously exposed to treatment.


Assuntos
Oryza , Proantocianidinas , Raios Ultravioleta , Proantocianidinas/metabolismo , Oryza/efeitos da radiação , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Sementes/efeitos da radiação , Sementes/metabolismo , Grão Comestível/efeitos da radiação , Grão Comestível/metabolismo , Fenótipo
3.
PLoS One ; 19(5): e0303040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713652

RESUMO

In the present study, we attempted to use melatonin combined with germination treatment to remove pesticide residues from contaminated grains. High levels of pesticide residues were detected in soybean seeds after soaking with chlorothalonil (10 mM) and malathion (1 mM) for 2 hours. Treatment with 50 µM melatonin for 5 days completely removed the pesticide residues, while in the control group, only 61-71% of pesticide residues were removed from soybean sprouts. Compared with the control, melatonin treatment for 7 days further increased the content of ascorbic acid (by 48-66%), total phenolics (by 52-68%), isoflavones (by 22-34%), the total antioxidant capacity (by 37-40%), and the accumulated levels of unsaturated fatty acids (C18:1, C18:2, and C18:3) (by 17-30%) in soybean sprouts. Moreover, melatonin treatment further increased the accumulation of ten components of phenols and isoflavones in soybean sprouts relative to those in the control. The ability of melatonin to accelerate the degradation of pesticide residues and promote the accumulation of antioxidant metabolites might be related to its ability to trigger the glutathione detoxification system in soybean sprouts. Melatonin promoted glutathione synthesis (by 49-139%) and elevated the activities of glutathione-S-transferase (by 24-78%) and glutathione reductase (by 38-61%). In summary, we report a new method in which combined treatment by melatonin and germination rapidly degrades pesticide residues in contaminated grains and improves the nutritional quality of food.


Assuntos
Antioxidantes , Germinação , Glycine max , Melatonina , Valor Nutritivo , Resíduos de Praguicidas , Sementes , Melatonina/farmacologia , Germinação/efeitos dos fármacos , Resíduos de Praguicidas/análise , Sementes/efeitos dos fármacos , Sementes/química , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Glycine max/química , Antioxidantes/metabolismo , Grão Comestível/efeitos dos fármacos , Grão Comestível/metabolismo , Fenóis/análise , Contaminação de Alimentos/análise , Glutationa/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(16): e2322211121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593080

RESUMO

Adenosine 3',5'-cyclic monophosphate (cAMP) is a universal signaling molecule that acts as a second messenger in various organisms. It is well established that cAMP plays essential roles across the tree of life, although the function of cAMP in land plants has long been debated. We previously identified the enzyme with both adenylyl cyclase (AC) and cAMP phosphodiesterase (PDE) activity as the cAMP-synthesis/hydrolysis enzyme COMBINED AC with PDE (CAPE) in the liverwort Marchantia polymorpha. CAPE is conserved in streptophytes that reproduce with motile sperm; however, the precise function of CAPE is not yet known. In this study, we demonstrate that the loss of function of CAPE in M. polymorpha led to male infertility due to impaired sperm flagellar motility. We also found that two genes encoding the regulatory subunits of cAMP-dependent protein kinase (PKA-R) were also involved in sperm motility. Based on these findings, it is evident that CAPE and PKA-Rs act as a cAMP signaling module that regulates sperm motility in M. polymorpha. Therefore, our results have shed light on the function of cAMP signaling and sperm motility regulators in land plants. This study suggests that cAMP signaling plays a common role in plant and animal sperm motility.


Assuntos
Marchantia , Masculino , Animais , Marchantia/genética , AMP Cíclico/metabolismo , Motilidade dos Espermatozoides/genética , Sementes/metabolismo , Adenilil Ciclases/metabolismo , Espermatozoides/metabolismo
5.
Oncol Rep ; 51(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38624012

RESUMO

Prostate cancer (PCa) is one the most common malignancies in men. The high incidence of bone metastasis years after primary therapy suggests that disseminated tumor cells must become dormant, but maintain their ability to proliferate in the bone marrow. Abscisic acid (ABA) is a stress response molecule best known for its regulation of seed germination, stomal opening, root shoot growth and other stress responses in plants. ABA is also synthesized by mammalian cells and has been linked to human disease. The aim of the present study was to examine the role of ABA in regulating tumor dormancy via signaling through lanthionine synthetase C­like protein 2 (LANCL2) and peroxisome proliferator activated receptor γ (PPARγ) receptors. ABA signaling in human PCa cell lines was studied using targeted gene knockdown (KD), western blotting, quantitative PCR, cell proliferation, migration, invasion and soft agar assays, as well as co­culture assays with bone marrow stromal cells. The data demonstrated that ABA signaling increased the expression of p21, p27 and p16, while inhibiting viability, migration, invasion and colony size in a reversable manner without toxicity. ABA also induced p38MAPK activation and NR2F1 signaling. Targeted gene KD of LANCL2 and PPARγ abrogated the cellular responses to ABA. Taken together, these data demonstrate that ABA may induce dormancy in PCa cell lines through LANCL2 and PPARγ signaling, and suggest novel targets to manage metastatic PCa growth.


Assuntos
Ácido Abscísico , Neoplasias da Próstata , Humanos , Masculino , Ácido Abscísico/metabolismo , Linhagem Celular Tumoral , Proteínas de Membrana/genética , Proteínas de Ligação a Fosfato/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Neoplasias da Próstata/genética , Sementes/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno
6.
Sci Rep ; 14(1): 9342, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653763

RESUMO

Chickpea is a highly nutritious protein-rich source and one of the major crops to alleviate global malnutrition, but poor seed quality affects its productivity. Seed quality is essential for better crop establishment and higher yields, particularly in the uncertain climate change. The present study investigated the impact of botanical priming versus hydropriming and bavistin seed treatment on chickpea seeds. A detailed physiological (germination percentage, root and shoot length, vigour index) and biochemical (amylase, protease, dehydrogenase, phytase, and lipid peroxidation) analysis was carried out in order to assess the effect of priming treatments. Turmeric-primed seeds showed better germination rate (94.5%), seedling length, enzyme activity, and lower malondialdehyde (MDA) content. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed the expression of minor polypeptides of albumin and globulin in the primed seeds. Moreover, field experiments indicated increased crop growth, vigour, days to 50% flowering, yield and its attributing traits in turmeric-primed seeds. Botanical priming can increase chickpea yield by up to 16% over the control group. This low-cost and eco-friendly technique enhances seed and crop performance, making it a powerful tool for augmenting chickpea growth. Therefore, chickpea growers must adopt botanical priming techniques to enhance the quality of seed and crop performance. Moreover, this approach is environmentally sustainable and can help conserve natural resources in the long term. Therefore, this new approach must be widely adopted across the agricultural industry to ensure sustainable and profitable farming practices.


Assuntos
Cicer , Produtos Agrícolas , Germinação , Sementes , Cicer/crescimento & desenvolvimento , Cicer/efeitos dos fármacos , Cicer/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/metabolismo , Germinação/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/metabolismo , Proteínas de Plantas/metabolismo , Malondialdeído/metabolismo
7.
J Proteomics ; 300: 105176, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38604334

RESUMO

Cold stratification is known to affect the speed of seed germination; however, its regulation at the molecular level in Ferula assa-foetida remains ambiguous. Here, we used cold stratification (4 °C in the dark) to induce germination in F. assa-foetida and adopted a proteomic and metabolomic approach to understand the molecular mechanism of germination. Compared to the control, we identified 209 non-redundant proteins and 96 metabolites in germinated F. assa-foetida seed. Results highlight the common and unique regulatory mechanisms like signaling cascade, reactivation of energy metabolism, activation of ROS scavenging system, DNA repair, gene expression cascade, cytoskeleton, and cell wall modulation in F. assa-foetida germination. A protein-protein interaction network identifies 18 hub protein species central to the interactome and could be a key player in F. assa-foetida germination. Further, the predominant metabolic pathways like glucosinolate biosynthesis, arginine and proline metabolism, cysteine and methionine metabolism, aminoacyl-tRNA biosynthesis, and carotenoid biosynthesis in germinating seed may indicate the regulation of carbon and nitrogen metabolism is prime essential to maintain the physiology of germinating seedlings. The findings of this study provide a better understanding of cold stratification-induced seed germination, which might be utilized for genetic modification and traditional breeding of Ferula assa-foetida. SIGNIFICANCE: Seed germination is the fundamental checkpoint for plant growth and development, which has ecological significance. Ferula assa-foetida L., commonly known as "asafoetida," is a medicinal and food crop with huge therapeutic potential. To date, our understanding of F. assa-foetida seed germination is rudimentary. Therefore, studying the molecular mechanism that governs dormancy decay and the onset of germination in F. assa-foetida is essential for understanding the basic principle of seed germination, which could offer to improve genetic modification and traditional breeding.


Assuntos
Ferula , Germinação , Proteínas de Plantas , Proteômica , Sementes , Germinação/fisiologia , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Ferula/metabolismo , Proteômica/métodos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Metabolômica , Regulação da Expressão Gênica de Plantas , Mapas de Interação de Proteínas , Proteoma/metabolismo
8.
Plant Cell Rep ; 43(4): 88, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461436

RESUMO

KEY MESSAGE: The homolog gene of the Growth Arrest and DNA Damage-inducible 45 (GADD45) in rice functions in the regulation of plant architecture, grain yield, and blast resistance. The Growth Arrest and DNA Damage-inducible 45 (GADD45) family proteins, well-established stress sensors and tumor suppressors in mammals, serve as pivotal regulators of genotoxic stress responses and tumorigenesis. In contrast, the homolog and role of GADD45 in plants have remained unclear. Herein, using forward genetics, we identified an activation tagging mutant AC13 exhibited dwarf characteristics resulting from the loss-of-function of the rice GADD45α homolog, denoted as OsGADD45a1. osgadd45a1 mutants displayed reduced plant height, shortened panicle length, and decreased grain yield compared to the wild-type Kitaake. Conversely, no obvious differences in plant height, panicle length, or grain yield were observed between wild-type and OsGADD45a1 overexpression plants. OsGADD45a1 displayed relatively high expression in germinated seeds and panicles, with localization in both the nucleus and cytoplasm. RNA-sequencing analysis suggested a potential role for OsGADD45a1 in the regulation of photosynthesis, and binding partner identification indicates OsGADD45a1 interacts with OsRML1 to regulate rice growth. Intriguingly, our study unveiled a novel role for OsGADD45a1 in rice blast resistance, as osgadd45a1 mutant showed enhanced resistance to Magnaporthe oryzae, and the expression of OsGADD45a1 was diminished upon blast fungus treatment. The involvement of OsGADD45a1 in rice blast fungus resistance presents a groundbreaking finding. In summary, our results shed light on the multifaceted role of OsGADD45a1 in rice, encompassing biotic stress response and the modulation of several agricultural traits, including plant height, panicle length, and grain yield.


Assuntos
Oryza , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Grão Comestível/genética , Sementes/genética , Sementes/metabolismo , Oryza/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
9.
Plant Physiol Biochem ; 209: 108526, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537383

RESUMO

Drought stress inhibits seed germination, plant growth and development of tobacco, and seriously affects the yield and quality of tobacco leaves. However, the molecular mechanism underlying tobacco drought stress response remains largely unknown. In this study, integrated analysis of transcriptome and metabolome was performed on the germinated seeds of a cultivated variety K326 and its EMS mutagenic mutant M28 with great drought tolerance. The result showed that drought stress inhibited seed germination of the both varieties, while the germination rate of M28 was faster than that of K326 under drought stress. Besides, the levels of phytohormone ABA, GA19, and zeatin were increased by drought stress in M28. Five vital pathways were identified through integrated transcriptomic and metabolomic analysis, including zeatin biosynthesis, aspartate and glutamate synthesis, phenylamine metabolism, glutathione metabolism, and phenylpropanoid synthesis. Furthermore, 20 key metabolites in the above pathways were selected for further analysis of gene modular-trait relationship, and then four highly correlated modules were found. Then analysis of gene expression network was carried out of Top30 hub gene of these four modules, and 9 key candidate genes were identified, including HSP70s, XTH16s, APX, PHI-1, 14-3-3, SCP, PPO. In conclusion, our study uncovered some key drought-responsive pathways and genes of tobacco during seeds germination, providing new insights into the regulatory mechanisms of tobacco drought stress response.


Assuntos
Germinação , Transcriptoma , Germinação/genética , Secas , Zeatina/metabolismo , Sementes/metabolismo , Metaboloma , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
10.
Plant Physiol Biochem ; 208: 108448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422578

RESUMO

Sucrose content is a key factor for the flavor of edible peanut, which determines the sweet taste of fresh peanut and also attribute to pleasant flavor of roasted peanut. To explore the genetic mechanism of the sucrose content in peanut, an F2 population was created by crossing the sweet cultivar Zhonghuatian 1 (ZHT1) with Nanyangbaipi (NYBP). A genomic region spanning 28.26 kb on chromosome A06 was identified for the sucrose content through genetic mapping, elucidating 47.5% phenotypic variance explained. As the sucrose content had a significantly negative correlation with the oil content, this region was also found to be related to the oil content explaining 37.2% of phenotype variation. In this region, Arahy.42CAD1 was characterized as the most likely candidate gene through a comprehensive analysis. The nuclear localization of Arahy.42CAD1 suggests its potential involvement in the regulation of gene expression for sucrose and oil contents in peanut. Transcriptome analysis of the developing seeds in both parents revealed that genes involved in glycolysis and triacylglycerol biosynthesis pathways were not significantly down-regulated in ZHT1, indicating that the sucrose accumulation was not attributed to the suppression of triacylglycerol biosynthesis. Based on the WGCNA analysis, Arahy.42CAD1 was co-expressed with the genes involved in vesicle transport and oil body assembly, suggesting that the sucrose accumulation may be caused by disruptions in TAG transportation or storage mechanisms. These findings offer new insights into the molecular mechanisms governing sucrose accumulation in peanut, and also provide a potential gene target for enhancing peanut flavor.


Assuntos
Arachis , Sacarose , Arachis/genética , Arachis/metabolismo , Sacarose/metabolismo , Perfilação da Expressão Gênica , Mapeamento Cromossômico , Triglicerídeos/metabolismo , Transcriptoma/genética , Sementes/genética , Sementes/metabolismo
11.
Plant Physiol ; 195(1): 745-761, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38365221

RESUMO

α-Linolenic acid (ALA), an essential fatty acid (FA) for human health, serves as the precursor of 2 nutritional benefits, docosahexaenoic acid and eicosapentaenoic acid, and can only be obtained from plant foods. We previously found that phospholipid:diacylglycerol acyltransferase 2 (PrPDAT2) derived from ALA-rich tree peony (Paeonia rockii) can promote seed ALA accumulation. However, the regulatory mechanism underlying its promoting effect on ALA accumulation remains unknown. Here, we revealed a tree peony dehydration-responsive element binding transcription factor, PrDREB2D, as an upstream regulator of PrPDAT2, which is involved in regulating seed ALA accumulation. Our findings demonstrated that PrDREB2D serves as a nucleus-localized transcriptional activator that directly activates PrPDAT2 expression. PrDREB2D altered the FA composition in transient overexpression Nicotiana benthamiana leaves and stable transgenic Arabidopsis (Arabidopsis thaliana) seeds. Repressing PrDREB2D expression in P. rockii resulted in decreased PrPDAT2 expression and ALA accumulation. In addition, PrDREB2D strengthened its regulation of ALA accumulation by recruiting the cofactor ABA-response element binding factor PrABF2b. Collectively, the study findings provide insights into the mechanism of seed ALA accumulation and avenues for enhancing ALA yield via biotechnological manipulation.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Paeonia , Proteínas de Plantas , Plantas Geneticamente Modificadas , Sementes , Fatores de Transcrição , Ácido alfa-Linolênico , Sementes/metabolismo , Sementes/genética , Ácido alfa-Linolênico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Paeonia/genética , Paeonia/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
12.
Am J Reprod Immunol ; 91(2): e13816, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38414306

RESUMO

PROBLEM: Reproductive performance of animals gets affected by nutritional restrictions which act as potential stressors leading to hormonal imbalance and testicular inflammation, the major causes of infertility. Withania somnifera (WS), well-known traditional medicinal plant, has been used as antistress and infertility treatment. Therefore, the present study looks into the ameliorative effects of WS on the reproductive and immune system of male Coturnix coturnix japonica in stressed conditions like water and food restriction focussing on the modulation in estrogen receptor alpha (ERα). METHOD OF STUDY: Biochemical estimations for oxidative stress, histological alterations, immuno-fluorescent localization of ERα, interleukin (IL)-1ß, IL-4, and interferon gamma (IFN-γ) in testicular cells were performed. RESULTS: Nutritional restriction declines endogenous estradiol, ERα in testicular cells while it elevates corticosterone leading to oxidative stress in testis thereby reducing fertility by decrease in sperm. Results indicate significant reversal in all the parameters after the administration of WS by improving testicular cell morphology, increased superoxide and catalase activity thus reducing oxidative stress. WS increases spermatogenesis and enhances expression of ERα in testicular cells in quail. Further, WS increases IL-4, decreases IL-1ß and IFN-γ expression in testis, thereby improving immune profile contrary to stressed conditions. CONCLUSION: WS stimulates HPG-axis even after stress resulting in increased endogenous estradiol which stimulates the expression of ERα in testis; increases sperm count and immunity thereby improving the reproductive performance. WS may be the best therapy against nutritional-restriction stress induced reproductive toxicity by reducing oxidative stress mediated inflammatory response via increased testicular expression of ERα in quail.


Assuntos
Infertilidade , Withania , Masculino , Animais , Testículo/metabolismo , Coturnix/metabolismo , Withania/metabolismo , Receptor alfa de Estrogênio/metabolismo , Interleucina-4/metabolismo , Sementes/metabolismo , Estresse Oxidativo , Fertilidade , Estradiol/metabolismo , Infertilidade/metabolismo , Inflamação/metabolismo
13.
Sci Rep ; 14(1): 3093, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326523

RESUMO

In this study, we have examined the feasibility of using elemental sulfur content of soybean seeds as a proxy for the overall sulfur amino acid content of soybean seeds. Earlier, we have identified by high throughput ionomic phenotyping several high and low sulfur containing soybean lines from the USDA Soybean Germplasm Collection. Here, we measured the cysteine and methionine content of select soybean lines by high-performance liquid chromatography. Our results demonstrate that those soybean lines which had high elemental sulfur content also had a higher cysteine and methionine content when compared to soybean lines with low elemental sulfur. SDS-PAGE and immunoblot analysis revealed that the accumulation of Bowman Birk protease inhibitor and lunasin in soybean seeds may only be marginally correlated with the elemental sulfur levels. However, we found a positive correlation between the levels of trypsin and chymotrypsin inhibitor activities and elemental sulfur and sulfur amino acid content of the seeds. Thus, elemental sulfur content and/or protease inhibitor activity measurement can be utilized as a rapid and cost-effective method to predict the overall sulfur amino acid content of soybean seeds. Our findings will benefit breeders in their endeavors to develop soybean cultivars with enhanced sulfur amino acid content.


Assuntos
Aminoácidos Sulfúricos , Inibidor da Tripsina de Soja de Bowman-Birk , Glycine max , Cisteína/metabolismo , Inibidor da Tripsina de Soja de Bowman-Birk/química , Análise Custo-Benefício , Aminoácidos Sulfúricos/metabolismo , Metionina/metabolismo , Sementes/metabolismo , Inibidores de Proteases/metabolismo
14.
Front Biosci (Landmark Ed) ; 29(2): 51, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38420825

RESUMO

BACKGROUND: Ribosome inactivating proteins (RIPs) are N-glycosylases found in various plants that are able to specifically and irreversibly inhibit protein translation, thereby leading to cell death. Their cytotoxic properties have attracted attention in the medical field in the context of developing new anticancer therapies. Quinoin is a novel toxic enzyme obtained from quinoa seeds and classified as a type 1 RIP (Chenopodium quinoa Willd.). Recently, quinoin was found to be cytotoxic to normal fibroblasts and keratinocytes in vitro, as well as to several tumor cell lines. METHODS: The aim of this study was to evaluate the in vitro and in vivo genotoxicity of quinoin in a zebrafish model. We evaluated its ability to induce DNA fragmentation, genomic instability, and reactive oxygen species (ROS) generation by means of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) reaction, randomly amplified polymorphic DNA (RAPD) Polymerase Chain Reaction (PCR) technique, and dichlorofluorescine (DCF) assay, respectively. RESULTS: Quinoin was found to cause genomic damage in zebrafish, as shown by DNA fragmentation, polymorphic variations leading to genomic instability, and oxidative stress. Interestingly, longer quinoin treatment caused less damage than shorter treatments. CONCLUSIONS: This study demonstrated ROS-mediated genotoxicity of quinoin toward the zebrafish genome. The reduced damage observed after longer quinoin treatment could indicate the activation of detoxification mechanisms, activation of repair mechanisms, or the loss of protein activity due to enzymatic digestion. In order to clarify the genotoxic actions of quinoin, further investigations of the response pathways to DNA damage are needed. Overall, the ability of quinoin to cause breaks and instability in DNA, together with its clear cytotoxicity, make it an interesting candidate for the development of new drugs for cancer treatment.


Assuntos
Chenopodium quinoa , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Chenopodium quinoa/metabolismo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Saporinas/metabolismo , Dano ao DNA , Sementes/genética , Sementes/metabolismo , Instabilidade Genômica , DNA/metabolismo
15.
Sci Rep ; 14(1): 4162, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378923

RESUMO

Applying extracts from plants is considered a safe approach in biomedicine and bio-nanotechnology. The present report is considered the first study that evaluated the seeds of Lasiurus scindicus and Panicum turgidum as biogenic agents in the synthesis of silver nanoparticles (AgNPs) which had bioactivity against cancer cells and bacteria. Assessment of NPs activity against varied cell lines (colorectal cancer HCT116 and breast cancer MDA MBA 231 and MCF 10A used as control) was performed beside the antibacterial efficiency. Different techniques (DLS, TEM, EDX and FTIR) were applied to characterize the biosynthesized AgNPs. The phytochemicals from both L. scindicus and Panicum turgidum were identified by GC-MS analysis. Spherical monodisperse NPs at average diameters of 149.6 and 100.4 nm were obtained from seed extract of L. scindicus (L-AgNPs) and P. turgidum, (P-AgNPs) respectively. A strong absorption peak at 3 keV is observed by the EDX spectrum in the tested NPs. Our study provided effective NPs in mitigating the tested cell lines and the lowest IC50 were 7.8 and 10.30 for MDA MB231 treated by L-AgNPs and P-AgNPs, respectively. Both fabricated NPs might differentially target the MDA MB231 cells compared to HCT116 and MCF10A. Ultrastructural changes and damage for the NPs-treated MDA MB231 cells were studied using TEM and LSM analysis. Antibacterial activity was also observed. About 200 compounds were identified in L. scindicus and P. turgidum by GC-MS analysis might be responsible for the NPs reduction and capping abilities. Efficient NPs against cancer cells and microbes were obtained, however large-scale screening is needed to validate our findings.


Assuntos
Nanopartículas Metálicas , Panicum , Prata/química , Panicum/metabolismo , Nanopartículas Metálicas/química , Extratos Vegetais/química , Antibacterianos/química , Sementes/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
16.
J Ethnopharmacol ; 325: 117851, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336182

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Raphanus sativus L. is a well-known medicinal plant with traditional therapeutic applications in various common ailments including inflammation and asthma. AIMS OF THE STUDY: This study aimed to evaluate the chemical composition and anti-asthmatic potential of the hydro-methanolic extract of the leaves of R. sativus L. (Rs.Cr) using various in vitro and in vivo investigations. MATERIALS AND METHODS: The Rs.Cr was subjected to preliminary phytochemical analysis and HPLC profiling. The safety was assessed through oral acute toxicity tests in mice. The antiasthmatic effect of the extract was studied using milk-induced leukocytosis and ovalbumin (OVA)-induced allergic asthma models established in mice. While mast cell degranulation and passive paw anaphylaxis models were established in rats. Moreover, effect of the extract was studied on various oxidative and inflammatory makers. The antioxidant effect of the extract was also studied by in vitro DPPH method. RESULTS: The HPLC profiling of Rs.Cr showed the presence of important polyphenols in a considerable quantity. In toxicity evaluation, Rs.Cr showed no sign of morbidity or mortality with LD50 < 2000 mg/kg. The extract revealed significant mast cell disruption in a dose-dependent manner compared to the intoxicated group. Similarly, treatment with Rs.Cr and dexamethasone significantly (p < 0.001) reduced paw edema volume. Subcutaneous injection of milk at a dose of 4 mL/kg, after 24 h of its administration, showed an increase in the leukocyte count in the intoxicated group. Similarly, mice treated with dexamethasone and Rs.Cr respectively showed a significant decrease in leukocytes and eosinophils count in the ovalbumin-induced allergic asthma model. The extract presented a significant (p˂0.001) alleviative effect on the levels of SOD and GSH, MDA, IL-4, IL-5, and IL-13 in a dose-dependent manner as compared to the intoxicated group. Furthermore, the histological evaluation also revealed a notable decrease in inflammatory and goblet cell count with reduced mucus production. CONCLUSION: The current study highlights mechanism-based novel insights into the anti-asthmatic potential of R. sativus that also strongly supports its traditional use in asthma.


Assuntos
Antiasmáticos , Asma , Raphanus , Ratos , Camundongos , Animais , Antiasmáticos/farmacologia , Antiasmáticos/uso terapêutico , Raphanus/química , Raphanus/metabolismo , Ovalbumina , Líquido da Lavagem Broncoalveolar , Estresse Oxidativo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Sementes/metabolismo , Dexametasona/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
17.
Plant Physiol Biochem ; 206: 108302, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38171134

RESUMO

Yellow seed is one desirable trait with great potential to improve seed oil quality and yield. The present study surveys the redundant role of BnTTG1 genes in the proanthocyanidins (PA) biosynthesis, oil content and abiotic stress resistance. Stable yellow seed mutants were generated after mutating BnTTG1 by CRISPR/Cas9 genome editing system. Yellow seed phenotype could be obtained only when both functional homologues of BnTTG1 were simultaneously knocked out. Homozygous mutants of BnTTG1 homologues showed decreased thickness and PA accumulation in seed coat. Transcriptome and qRT-PCR analysis indicated that BnTTG1 mutation inhibited the expression of genes involved in phenylpropanoid and flavonoid biosynthetic pathways. Increased seed oil content and alteration of fatty acid (FA) composition were observed in homozygous mutants of BnTTG1 with enriched expression of genes involved in FA biosynthesis pathway. In addition, target mutation of BnTTG1 accelerated seed germination rate under salt and cold stresses. Enhanced seed germination capacity in BnTTG1 mutants was correlated with the change of expression level of ABA responsive genes. Overall, this study elucidated the redundant role of BnTTG1 in regulating seed coat color and established an efficient approach for generating yellow-seeded oilseed rape genetic resources with increase oil content, modified FA composition and resistance to multiple abiotic stresses.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Germinação/genética , Sementes/genética , Sementes/metabolismo , Brassica rapa/genética , Mutagênese , Estresse Fisiológico/genética , Óleos de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
18.
Sci Rep ; 14(1): 87, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167975

RESUMO

Fenugreek (Trigonella foenum-graecum L.) is a multi-use annual forage legume crop that is widely used in food products such as syrup, bitter run, curries, stew, and flavoring. In the present study, morphological traits, proximate composition (moisture, crude fibre, protein, fat, carbohydrate, and energy value), total phenol and total flavonoid contents, and antioxidant properties of 31 Iranian agro-ecotypic populations of the plant was investigated. Among the leaf and seed samples studied, the seeds exhibited the high ash (3.94 ± 0.12%), fat (7.94 ± 0.78%), crude fibre (10.3 ± 0.25%), protein (35.41 ± 1.86%), and carbohydrate (50.5 ± 1.90%) content. In general, more energy value (kcal/100 g) was also obtained from the seed (318.88 ± 1.78-350.44 ± 1.27) than leaf samples (45.50 ± 1.32-89.28 ± 0.85). Antioxidant activity and power of leaf samples were ranged from 67.95 ± 0.05‒157.52 ± 0.20 µg/ml and from 45.17 ± 0.01‒361.92 ± 0.78 µmol Fe+2 per g dry weigh, respectively. Positive linear correlations between antioxidant activity and total phenolic compounds were observed. A significant correlation between proximate composition (dependent variable) and some morphological features (independent variable) was observed. Considerable variability in the studied traits among the plant samples can be interestingly used in further food and production systems.


Assuntos
Antioxidantes , Trigonella , Antioxidantes/metabolismo , Trigonella/química , Irã (Geográfico) , Extratos Vegetais/química , Sementes/metabolismo , Carboidratos/análise , Compostos Fitoquímicos/análise
19.
Food Res Int ; 176: 113826, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163688

RESUMO

Grape seeds are a valuable source of natural phenolic compounds, particularly flavan-3-ol derivatives such as condensed tannins. Recent studies have shown that grape seed powder can be applied to reduce the undesirable effects of protein instability in wine. One pretreatment method applied to grape seeds is roasting. Roasting causes the heavier proanthocyanidins (PAC) oligomers to break down, thereby increasing the concentration of smaller oligomers available for interaction with proteins. In addition, roasting can prolong grape seed storage. Among the subclasses of proanthocyanidins, oligomeric macrocyclic proanthocyanidins have also shown potential effects in terms of wine stabilization, particularly by presenting selective interactions with metal cations such as potassium and calcium. However, their composition in grape seed extracts has never been studied. Here, the characterization of condensed tannins according to the degree of polymerization in grape seeds, the profile of cyclic proanthocyanidins and the total polyphenol content were characterized in relation to different grape varieties and the application of roasting. Roasting greatly influenced the distribution of PAC according to the degree of polymerization, increasing the abundance of almost all classes of PAC. However, the overall effect of roasting was highly dependent on grape variety. PAC were analyzed according to the degree of polymerization. Grape seed roasting of red varieties (Croatina and Sangiovese) showed an increase in all classes of PAC except trimers. The white variety (Ortrugo) and the mix of Nebbiolo and Barbera varieties (80% and 20% w/w, respectively) showed no clear effect on the profile of PAC upon roasting. Notably, cyclic procyanidins were identified for the first time in grape seeds: a cyclic tetrameric procyanidin (ESI + m/z 1153) and cyclic pentameric procyanidin (ESI + m/z 1441) were found. The abundances of these cyclic PAC were found to be completely stable upon roasting, also in agreement with the already known stability of these compounds against depolymerizing conditions. Interestingly, the cyclic pentameric procyanidin was significantly more abundant in Ortrugo (white variety), than in Sangiovese and Croatina (red varieties). Besides, no effect of roasting occurred on the profile of cyclic procyanidins in grape seed powder. Finally, the total polyphenol content was evaluated, showing that roasting caused an increase of polyphenolic molecular species potentially available for protein stabilization, but only in GSP of red varieties. Overall, the grape variety was found to be a significant factor in determining how much the roasting would change the PAC profile, providing valuable information for future applications of GSP in enology.


Assuntos
Proantocianidinas , Vitis , Proantocianidinas/metabolismo , Vitis/metabolismo , Polifenóis/metabolismo , Pós , Sementes/metabolismo , Antioxidantes/farmacologia
20.
Food Funct ; 15(3): 1355-1368, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38205834

RESUMO

Dietary nutritional support for special populations is an effective and feasible method to improve the quality of life of patients and reduce medical pressure. Acer truncatum Bunge seed oil (ATSO) is widely recognized for its ability to promote nerve myelin regeneration. To evaluate the ameliorative effects of ATSO on chemotherapy-induced demyelination, a zebrafish model of chemotherapy-induced demyelination was established. The results showed that 100 µg mL-1 of ATSO reversed tail morphology damage, axon degeneration, touch response delay, ROS level upregulation and the expression of myelin basic protein decrease in chemotherapy-induced zebrafish. In addition, the expression of myelin markers (including sox10, krox20, and pmp22) in oxaliplatin-induced cells was markedly reversed by ATSO and its active components (gondoic acid, erucic acid, and nervonic acid). ATSO and its active components could reverse demyelination by ameliorating mitochondrial dysfunction. Conversely, linoleic acid and linolenic acid promoted demyelination by exacerbating mitochondrial dysfunction. Moreover, the Pink1/Parkin pathway was recognized as the main reason for ATSO and its active components improving mitochondrial function by activating mitophagy and restoring autophagic flow. Taken together, this study demonstrated that ATSO and its active components could be further developed as novel functional food ingredients to antagonize demyelination.


Assuntos
Acer , Antineoplásicos , Doenças Desmielinizantes , Doenças Mitocondriais , Animais , Humanos , Mitofagia , Oxaliplatina/farmacologia , Peixe-Zebra/metabolismo , Qualidade de Vida , Sementes/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Óleos de Plantas/farmacologia , Antineoplásicos/farmacologia , Proteínas Serina-Treonina Quinases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA